飲料粕のバイオ炭、バイオコークスの製造 / 熱分解装置 Biogreen / 炭化, 炭化炉

■ 飲料粕のバイオ炭、バイオコークスの製造 / 熱分解装置 Biogreen / 炭化, 炭化炉

 

コーヒー粕、茶殻など、飲料製造の過程で排出される有機廃棄物の飲料粕は、従来、大量に廃棄処分されていましたが、最近は、バイオ炭やバイオコークスといった新たな資源として注目されています。
飲料粕は大量に発生する食品廃棄物の一つです。これを炭化することで、廃棄物量を大幅に減らすことができる上、資源の再利用ができます。炭化された飲料粕はバイオ炭、バイオコークスとして活用でき、土壌改良材や吸着材、燃料、製鉄所のコークスの代替としての利用が可能です。また、炭化過程で生成されるガスや熱エネルギーも回収して再利用できるため、持続可能な資源循環に貢献します。
バイオ炭、バイオコークス等の炭化物は、処理物を熱分解することにより生成されます。Biogreen の熱分解処理は、化石燃料や火気を一切使用しない低圧電流のジュール熱で行われる電気での加熱です。このため、処理時に地球温暖化ガスCO2が発生しません。Biogreenの熱分解装置は地球温暖化ガスを排出しない「脱炭素」の装置です。

 

バイオ炭
バイオ炭 炭化 バイオコークス 熱分解装置 biogreen 2024.10.31
出典:Wiki バイオ炭

 

飲料粕の炭化物は、他の炭化物と比較して以下の特徴が挙げられます。

低灰分・低硫黄含有
飲料粕由来の炭化物は、木材や農業残渣の炭化物と比較して灰分や硫黄の含有量が低く、燃焼時の環境負荷が少ない。
多孔質構造の多様性
飲料粕は発酵や加工過程で構造が変化しているため、炭化すると多様な孔径を持つ多孔質構造になりやすく、吸着材として十分に利用ができる。
窒素化合物含有
カフェインやタンニンなどの窒素化合物が多く含まれおり、炭化過程窒素ドープされた炭素材料の生成が可能。窒素ドープは、炭素材料の電子特性を変化させ、触媒活性や電気伝導性を向上させる効果が期待できる。
ミネラル成分含有
飲料粕には、カリウム、カルシウム、マグネシウムなどのミネラル成分が含まれており、炭化により残留し、土壌改良剤としての機能を強化できる。
機能性成分含有
飲料粕の種類によっては、ポリフェノールなどの機能性成分が炭化後も残存する場合があるため、抗菌作用や抗酸化作用を示し、様々な分野での応用が期待される。

 

 

熱分解により生成されるバイオ炭とバイオコークスは加熱温度等製造方法が異なります。

バイオ炭

低温炭化
比較的低い温度で加熱する。この方法では、原料の有機物が完全に分解されず、高分子構造が部分的に残っていることが特徴。
多様な原料
木材、草本、農業廃棄物など、様々なバイオマスを原料として製造ができる。

 

バイオコークス

高温炭化
高温で加熱する。この高温によって、原料の有機物がほぼ完全に分解され、固定炭素含量の高い、緻密な構造を持つ炭素質物質が得られる。
原料の選定
バイオコークスは、製鉄用のコークスの代替として利用されるため、原料の選定が重要。一般的に、固定炭素含量が高く、灰分が少ない原料が好まれる。

 

バイオ炭、バイオコークスは、処理物を炭化することで製造されます。炭化は、処理物を無酸素状態で加熱する熱分解処理によって生成されます。Biogreen 熱分解装置で製造された炭化物は高品質でばらつきがなく、品質が均一です。

Biogreen の熱分解処理は、化石燃料や火気を一切使用しない低圧電流のジュール熱で行われる電気での加熱です。このため、処理時に地球温暖化ガスCO2が発生しません。また、熱分解処理にとって非常に重要な温度と機内滞留時間の管理調整は、モニターで管理し、タッチパネル操作で簡単に実行できます。安全衛生面でも非常に優れています。
装置の設置面積は小さくコンパクトで、コンテナー内設置も可能です。連続式での運転のため、24時間連続運転が可能で、運転状況はモニターで監視し、運転管理操作はタッチパネルで簡単にできます。人手を必要としない自動化されたシステムです。

Biogreenは、国際特許技術を取得した他に類を見ない電気熱源の連続式熱分解装置で、構造が単純で部品数が少ないため、故障しにくくメンテナンスが容易で、長時間の使用にも耐えられます。化石燃料を使用するバーナーの直火加熱や熱風加熱による熱分解、ガス化、炭化装置と比較すると、Biogreenの熱分解装置は地球温暖化ガスを排出しない「脱炭素」であり、安全性、設置面積、操作性、メンテナンス性などで明らかな優位性を持っています。

熱分解は、無酸素状態で処理物を加熱することにより、ガスと炭を生成します。ガスを冷却することにより油が生成されます。ガス、炭、及び油は全て利活用ができ、それらを利活用することにより廃棄物が一切なくなるゼロエミッションが可能です。

 

熱分解とは 熱分解装置 Biogreen 炭化 油化 ガス化 2024.10.27

 

熱分解処理は加熱温度によりその処理物から生成される割合が異なります。温度が高いほどガスが多く生成され、温度が低いほど炭が多く生成されます。高温での熱分解では、炭の生成割合が少なくなりますが、質の良い安定した炭が製造できます。
Biogreenは、熱源が電気のため、熱分解処理にとって重要な加熱温度、滞留時間の調整がタッチパネル式で簡単にできるうえ、処理時にCO2の発生はありません。バーナー式等化石燃料の火気を使用した熱分解装置は温度調整が難しく熱分解時にCO2を大量に発生します。
熱分解によるバイオコークスの製造は、バイオ炭の製造時より高温で加熱し、品質の良い炭化物を生成しますが、Biogreenでは加熱温度の調整が容易にできます。

 

熱分解 加熱温度での生成割合 熱分解装置 Biogreen 炭化 油化 ガス化 2024.10.27

 

 

■ バイオ炭、バイオコークス製造で Biogreen が選ばれる理由

 

バイオ炭およびバイオコークスの製造でBiogreenが選ばれる理由には、以下の特徴が挙げられます:

CO2フリーの電熱源:Biogreenは電気加熱を利用し、温室効果ガスの排出を抑え、環境に配慮したプロセスを実現しています。

高い熱効率:エネルギー効率が高く、原料から高品質のバイオ炭およびバイオコークスを効果的に生成することが可能です。

優れた製品品質:温度や加熱速度を細かく制御でき、均一で高品質な製品が得られ、農業用やエネルギー用途での効果が期待されます。

操作とメンテナンスの容易さ:Biogreenシステムは設置が簡単で、長期的な維持管理が容易であるため、コスト削減にも貢献します。

これらの利点から、Biogreenはバイオ炭やバイオコークス製造において、持続可能かつ効率的な選択肢として注目されています。

 


木くずのバイオ炭の製造

 

 

■ 飲料粕のバイオ炭

 

飲料粕のバイオ炭の特徴には、以下の点が含まれます:

  1. 高い炭素含有量:炭化によって高い炭素含有率を持ち、長期間の炭素固定が可能です。
  2. 吸着性:有害物質や重金属、その他の不純物を吸着する能力が高く、環境浄化に適しています。
  3. 土壌改良:水分保持力を高め、養分を効率的に保持するため、農業用土壌改良材としても効果的です。
  4. 持続可能な資源利用:飲料製造の副産物を再利用することで廃棄物の削減と環境への貢献が図られます。

このように、飲料粕のバイオ炭は環境や農業において有益な役割を果たします。

出典:ChatGPT

 

■ 飲料粕のバイオコークス

 

飲料粕のバイオコークスの特徴には、以下の点が含まれます:

  1. 高いエネルギー効率:発熱量が高く、石炭の代替燃料として利用でき、持続可能なエネルギー資源となります。
  2. 鉄鋼・鋳物業界での利用:バイオコークスは還元剤や脱酸材として鉄鋼や鋳物の製造過程で使用可能で、化石燃料由来のコークスの代替としての期待が高まっています。これにより、二酸化炭素排出量の削減に貢献し、業界の脱炭素化を支援します。
  3. 安定した燃焼と環境負荷の低減:炭素含有量が高いため安定した熱供給が可能で、温室効果ガスの削減や廃棄物の削減にもつながります。

このように、飲料粕のバイオコークスはエネルギー効率と持続可能性に加え、鉄鋼・鋳物業界での用途が期待される資源です。

出典:ChatGPT

 

■ 飲料粕のバイオ炭とバイオコークスの違い

 

飲料粕を原料とするバイオ炭とバイオコークスは、どちらも環境負荷の低減が期待されるバイオマス燃料ですが、その特性や用途が大きく異なります。

飲料粕のバイオ炭とバイオコークスの比較

特徴バイオ炭バイオコークス
製造過程低温で炭化高温高圧で炭化
形状粉末状~粒状緻密な塊
用途土壌改良剤、肥料、水質浄化剤、建築材料など製鉄、火力発電、工業用燃料など
特徴多孔質構造、吸着性、安定性高密度、高強度、高温燃焼性

バイオ炭の特徴

  • 多孔質構造: 表面に無数の小さな穴があり、その表面積が非常に大きいため、様々な物質を吸着する能力が高いです。
  • 吸着性: 水分、養分、有害物質などを吸着し、保持することができます。
  • 安定性: 炭化されているため、土壌中で微生物によって分解されにくく、長期的にその効果を発揮します。
  • 用途: 主に農業や環境分野で利用されます。土壌改良剤として土壌の物理性を改善したり、水質浄化剤として水中の汚染物質を吸着したりするなど、幅広い用途があります。

バイオコークスの特徴

  • 高密度・高強度: 高温高圧下で炭化されるため、石炭コークスに匹敵する高密度・高強度の固形燃料となります。
  • 高温燃焼性: 高温で安定した燃焼が可能であり、製鉄などの高温を必要とするプロセスで利用できます。
  • 用途: 主に鉄鋼、鋳物、火力発電などの分野で利用されます。従来の石炭コークスに代わる燃料として注目されています。

両者の違い

  • 製造温度: バイオ炭は低温で炭化されるのに対し、バイオコークスは高温高圧で炭化されます。
  • 形状: バイオ炭は粉末状や粒状であることが多いですが、バイオコークスは緻密な塊状です。
  • 用途: バイオ炭は主に農業や環境分野、バイオコークスは主にエネルギー分野で利用されます。

まとめ

飲料粕のバイオ炭とバイオコークスは、どちらも飲料粕を原料とするバイオマス燃料ですが、製造方法や特性、用途が大きく異なります。バイオ炭は、その多孔質構造と吸着性を活かして、農業や環境分野での利用が期待されています。一方、バイオコークスは、高温燃焼性と高強度を活かして、製鉄や火力発電などの分野での利用が期待されています。

出典:Gemini

 


 

熱分解装置 Biogreen

熱分解装置 Biogreen 炭化 2024.6.18

 

 

 

女性 イラスト 飲料粕 バイオ炭 バイオコークス 炭化 2024.10.30

 

 


 

■ 電熱スクリュー Spirajoule

 

Spirajouleは国際特許取得済みの熱分解装置です。Biogreenシステムの心臓部と言えます。最適な熱分解処理は滞留時間と加熱温度の調整で行います。この調整がこの装置では簡単に行えます。

熱分解装置 Spirajouleは 電気式です。火気、石油燃料を一切使用しないため、地球温暖化ガスが発生しない脱炭素装置です。しかも連続式です。
熱分解は 無酸素状態の密閉された Spirajoule 熱分解装置内のスクリューで行われます。スクリューへ電流を通しそのジュール熱で投入された原料を加熱し熱分解を行なっています。そのスクリューが回転することで原料を熱分解を行ないながら搬送しています。
熱分解の温度はジュール熱の大きさで調整し、原料の滞留時間はスクリューの回転数調整により行ないます。その調整はいずれも制御盤のタッチパネルで簡単にできます。熱分解で最も重要な温度と滞留時間の調整は電気式のため簡単に行なえるとも言えます。火気、石油燃料を使用する装置と比較しても非常に安全で衛生面で優れています。又、処理はバッチ式ではなく連続式ですので人を張り付ける必要がありません。

下記パンフレットはこちらをクリック頂ければダウンロードできます。

Spirajoule Electrical technology 2024

 

 

Spirajoule 連続式電気炉

 

■ Biogreen 熱分解装置 システム


Biogreen は投入された原料を無酸素での加熱、熱分解を行ないます。熱分解により原料より炭素分のみを残し、原料に含まれる可燃性ガス等の合成ガスを発散させます。投入原料を選ばず、熱分解処理でガス、炭、オイルを製造発生させそれぞれが利活用ができ、その廃棄物が持つエネルギーは最大限利活用され廃棄物はなくなります。
Biogreen の熱分解処理は化石燃料、火気は一切使用しない低圧電流のジュール効果で行なう電気での加熱そして連続式での運転のため、24時間連続運転が可能で運転状況はモニターで監視し、運転管理操作はタッチパネルで楽にでき、人手を必要としません。Biogreen は国際特許技術で他にはない独自の熱分解装置ですが、構造は単純で部品点数は少なく壊れにくくメンテナンスは楽で長持ちし長時間使用ができます。熱分解処理にとり非常に重要な温度、機内滞留時間の管理調整はモニターで管理しタッチパネル操作で簡単にでき、安全衛生面でもとても優れています。装置の設置面積は小さくコンパクトでコンテナー内設置も可能で移動もでき、場所を選びません。
Biogreen は熱分解時の加熱温度によりガス、炭化物を作り出す産出の割合が異なります。そのため、熱分解装置 Biogreen は炭化装置、炭化炉あるいはガス化装置、ガス化炉とも言えます。熱分解後のその産出製造物の利用目的に合わせ加熱温度の調整を行ないますが、その温度調整、管理は、Biogreenであれば電気加熱式ですので簡単に確実に行なえます。又、その加熱は石油燃料を一切使用せず火気は未使用のため安全衛生面、運転操作面で火気使用熱分解装置、炭化炉、ガス化炉と比較すると非常に優れていると言えます。

 

炭化、半炭化

油 化

 


 

■ バイオ炭のコンクリート骨材利用

 

バイオ炭をコンクリートの骨材として利用することは、近年注目されている非常に興味深い取り組みです。この手法は、環境負荷の低減と新たな可能性を秘めています。

バイオ炭をコンクリート骨材として利用するメリット

  • CO2固定化: バイオ炭は、植物由来の有機物を酸素の少ない環境で高温加熱して作られます。この過程でCO2が固定されるため、大気中のCO2濃度を削減する効果が期待できます。
  • 強度向上: バイオ炭の多孔質構造は、コンクリートとの間に良好な界面を形成し、コンクリートの強度を向上させる可能性があります。
  • 耐久性向上: バイオ炭の添加により、コンクリートの耐久性が向上するとの報告もあります。これは、バイオ炭の吸水性やアルカリ耐性によるものと考えられています。
  • 軽量化: バイオ炭は軽量であるため、コンクリートの軽量化に貢献し、輸送や施工の際の負荷を軽減できます。
  • 廃棄物利用: 農業廃棄物などを原料とするバイオ炭の利用は、廃棄物処理問題の解決にもつながります。

バイオ炭をコンクリート骨材として利用する課題

  • 品質の安定化: バイオ炭の品質は、原料や製造条件によって大きく変動するため、コンクリートの品質に安定して影響を与えることが難しいという課題があります。
  • コスト: 現時点では、バイオ炭の製造コストが高いため、コンクリートの製造コストを上昇させる可能性があります。
  • 長期的な耐久性: バイオ炭の長期的な耐久性については、まだ十分なデータが蓄積されていません。
  • 大規模な生産体制: バイオ炭をコンクリートの骨材として大量に利用するためには、大規模な生産体制を構築する必要があります。

今後の展望

バイオ炭をコンクリートの骨材として利用する技術は、まだ発展途上ですが、その可能性は非常に高いです。今後、以下の点が期待されます。

  • バイオ炭の品質管理: バイオ炭の品質を安定化させるための技術開発
  • コスト削減: バイオ炭の製造コストを削減するための技術開発
  • 長期的な耐久性評価: バイオ炭を混入したコンクリートの長期的な耐久性評価
  • 大規模な実証実験: 実用化に向けた大規模な実証実験

バイオ炭コンクリートは、カーボンニュートラルな社会の実現に向けて重要な役割を果たすことが期待されています。

出典:Gemini

 

■ 2024年現在日本国内で木材が足りない理由

 

2024年現在も、日本は深刻な木材不足に直面しており、建設や家具などの木材需要に対して供給が追いついていない状況です。

<2021年から続くウッドショックの影響>

2021年から2022年にかけて発生したウッドショックの影響は、2024年現在も依然として続いています。ウッドショックとは、北米を中心とした木材供給量の減少と需要の急増により、世界的に木材価格が高騰した現象です。

  • 住宅メーカーや木材業者は、木材調達の困難や価格高騰の影響を受け続けています。
  • 新築住宅の建築費用上昇や、木材を使った家具の価格改定などが相次いでいます。

<構造的な木材不足の背景>

ウッドショック以外にも、日本の木材不足には構造的な背景が存在します。

  • 国内産木材の伐採量の減少:戦後の高度経済成長期における住宅建設ラッシュで大量の木材が伐採された後、植林活動が十分に行われず、現在伐採できる木材量が減っています。
  • 山間部の過疎化と林業従事者の減少:山間部の過疎化が進み、林業に従事する人が減少しています。
  • 海外からの木材輸入量の増加:日本の経済成長に伴い、木材需要が急増し、国内産木材だけでは需要を満たせなくなり、海外からの木材輸入量が増加しています。
  • 木材自給率の低さ:2020年の木材自給率は37%で、過去最低の水準となっています。

<政府の取り組みと課題>

木材不足の解決に向けて、政府は様々な取り組みを進めています。

  • 国産材の利用促進:国産材の品質向上や流通の円滑化、国産材利用に関する補助金制度の拡充、木造建築に関する技術開発など
  • 森林資源の管理・整備:植林活動の推進、山間部の森林管理の強化、森林の多面的機能の維持・向上
  • 海外からの木材輸入の安定化:輸出国との連携強化、輸送手段の多様化

しかし、これらの取り組みは長期的な視点での継続が必要であり、短期的には木材不足の解消は難しい状況です。

<2024年における木材価格の動向>

2024年における木材価格の動向は、引き続き不透明な状況です。

  • ウッドショックの影響や世界経済の動向によって、木材価格が上下に変動する可能性があります。
  • 短期的な視点では、木材価格の高止まりが続く可能性が高いと考えられます。
  • 中長期的な視点では、国産材の利用促進や森林資源の管理・整備などの取り組みが奏功し、木材価格が安定化する可能性もありますが、現時点では明確な展望はありません。

出典:Gemini

 

■ コークス代替炭化物

 

コークスは、鉄鋼製造などで重要な還元剤として使用されていますが、持続可能性や環境負荷の観点から、コークスの代替として利用できる炭化物が注目されています。以下は、コークスの代替となり得る炭化物の具体例です。

1. バイオコークス(バイオ炭)

  • 竹炭:竹から得られる炭は、高い密度と炭素含有量を持ち、鉄鉱石の還元に適しています。
  • ココナッツ殻炭:高い炭素含有量と硬度があり、製鋼プロセスでのコークスの代替として利用可能です。

2. 農業廃棄物由来の炭化物

  • 米の籾殻炭:シリカを含む米の籾殻炭は、特定の還元プロセスで利用できますが、鉄鋼製造にも適応可能な場合があります。
  • トウモロコシの芯炭:高い炭素含有量があり、製鉄業での還元剤として有望です。

3. 食品廃棄物由来の炭化物

  • コーヒーかす炭:コーヒーかすから得られる炭化物は、還元力が強く、金属の精錬や触媒のサポート材として利用できます。

4. 動物由来の炭化物

  • 骨炭:骨から得られる炭化物は、リン酸カルシウムを含み、特定の化学工業での還元剤として使用されます。

5. 庭園廃棄物由来の炭化物

  • 葉や草の炭:庭園廃棄物から得られる炭化物も還元剤として利用可能で、特に小規模な工業プロセスや農業用途に適しています。

利点と考慮点

利点

  • 持続可能性:これらの代替炭化物は再生可能な資源から作られており、環境負荷が低い。
  • 廃棄物の再利用:農業廃棄物や食品廃棄物を利用することで、廃棄物処理問題を軽減します。
  • 炭素固定:炭化物を利用することで、二酸化炭素の排出を抑え、炭素を固定化できます。

考慮点

  • 性能の安定性:コークスの代替として使用するためには、代替炭化物の性能が安定していることが重要です。
  • 製造コスト:新しいプロセスを導入するためのコストと技術的な課題を考慮する必要があります。
  • 供給の安定性:大量生産に対応するための安定した供給源が必要です。

具体例:バイオコークスの製造と利用

  • 製造方法:バイオマス原料を炭化し、高温で処理してバイオコークスを生成します。
  • 鉄鋼業での利用:高炉での鉄鉱石の還元プロセスにおいて、バイオコークスをコークスの代替として使用します。これにより、炭素排出量の削減が期待されます。

コークスの代替炭化物は、持続可能な鉄鋼製造と環境保全の両立を目指す上で重要な役割を果たす可能性があります。今後の研究と技術開発により、これらの代替炭化物の利用がさらに進むことが期待されます。

出典:ChatGPT

 

■ 有機廃棄物のバイオ炭

 

**有機廃棄物のバイオ炭(Biochar)**は、有機廃棄物を原料とし、高温で無酸素または低酸素環境下で炭化させた炭素材料です。バイオ炭は、環境保全や農業など、さまざまな分野で利用されるようになっており、その製造と利用には多くのメリットがあります。

バイオ炭の製造プロセス

  1. 原料: 有機廃棄物として使用される原料は、多岐にわたります。代表的なものには、農業廃棄物(例:稲わら、トウモロコシの茎)、林業廃棄物(例:木くず、枝葉)、食品廃棄物(例:果物の皮、食品加工廃棄物)などがあります。
  2. 炭化(Pyrolysis): バイオ炭は、有機廃棄物を400~700°C程度の高温で、酸素の供給を制限した状態で熱処理することで生成されます。このプロセスで、原料中の有機物が分解され、揮発成分が除去されて安定した炭素が残ります。
  3. 製品化: 炭化されたバイオ炭は粉末状や粒状に加工され、土壌改良剤や炭素貯留材、浄水材などとして利用されます。

バイオ炭の利点

  • 土壌改良: バイオ炭は、土壌の物理的・化学的性質を改善する効果があります。水分保持力の向上、微生物活動の促進、肥料の効率化などに寄与します。
  • 炭素貯留: バイオ炭は炭素を長期間安定して貯留する能力があります。これにより、大気中の二酸化炭素の削減に貢献し、気候変動の緩和策として注目されています。
  • 廃棄物の有効利用: バイオ炭の製造は、有機廃棄物を有価な製品に変える手段としても重要です。これにより、廃棄物処理の負担が軽減され、資源の再利用が促進されます。
  • 環境浄化: バイオ炭は、土壌や水中の有害物質を吸着する能力があり、環境汚染の防止や浄化にも役立ちます。たとえば、重金属や農薬の吸着による土壌浄化が期待されています。

バイオ炭の利用分野

  • 農業: バイオ炭は、土壌改良剤として利用され、農業生産性の向上に寄与します。また、温室効果ガスの排出削減や肥料利用効率の向上にもつながります。
  • 炭素貯留: 気候変動対策として、バイオ炭の製造と土壌への埋設が進められています。バイオ炭に貯留された炭素は、数百年から数千年にわたり安定して土壌中に留まります。
  • 水処理: バイオ炭は、その多孔質構造により、浄水材や廃水処理材として利用されます。特に、微量の有害物質や有機汚染物質の除去に効果的です。
  • 建設資材: バイオ炭は、コンクリートやアスファルトなどの建設材料に添加することで、炭素フットプリントの低減や材料特性の改善が図られます。

バイオ炭は、有機廃棄物を資源として活用する持続可能な技術であり、環境保全や循環型社会の構築に重要な役割を果たしています。

出典:ChatGPT

 

■ 有機廃棄物のバイオコークス

 

**バイオコークス(Bio-Coke)**は、有機廃棄物を原料として製造される固体燃料で、特に石炭の代替として利用されることが期待されています。バイオコークスは、炭素を多く含むため、エネルギー密度が高く、産業用途やエネルギー供給に利用されています。

バイオコークスの製造プロセス

  1. 原料の選定: バイオコークスの原料として使用される有機廃棄物は、木材チップ、農業廃棄物(稲わら、麦わら)、食品廃棄物(コーヒーかす、食品加工廃棄物)など、炭素含有量が高いものが選ばれます。
  2. 粉砕と乾燥: 原料は粉砕されて細かい粉末にされ、その後、乾燥工程で水分を除去します。これにより、燃料としての品質が向上します。
  3. 成形と焼成: 粉末化された原料を圧縮成形し、その後、無酸素または低酸素環境下で高温で加熱します。この工程で、原料中の揮発成分が除去され、残った炭素が固化してバイオコークスが生成されます。
  4. 冷却と仕上げ: 焼成後のバイオコークスは冷却され、使用可能な形態(ペレット状、ブリケット状など)に仕上げられます。

バイオコークスの利点

  • 環境にやさしい: バイオコークスは再生可能な有機廃棄物から作られるため、化石燃料の代替として使用することで、二酸化炭素の排出削減に寄与します。また、製造時に排出される温室効果ガスも少ないため、環境負荷が低いです。
  • 資源の有効利用: 有機廃棄物を原料として利用することで、廃棄物の処理コストを削減し、廃棄物をエネルギー資源として有効に活用することができます。
  • 高いエネルギー密度: バイオコークスは、石炭に近いエネルギー密度を持っており、燃料としての利用価値が高いです。特に製鉄業やセメント産業など、高エネルギー消費の産業に適しています。
  • 安定した供給: 有機廃棄物は多くの産業で日常的に発生するため、安定した供給が期待できます。これにより、バイオコークスの持続可能な生産が可能となります。

バイオコークスの利用分野

  • 製鉄業: バイオコークスは、石炭やコークスの代替として製鉄プロセスで使用されることが増えています。特に、高炉や電気炉での還元剤として利用され、炭素排出量の削減に寄与します。
  • セメント産業: セメントの製造プロセスでも、バイオコークスが石炭の代替燃料として利用されることがあります。これにより、製造プロセスの環境負荷が低減されます。
  • エネルギー供給: バイオコークスは、発電所の燃料や産業用ボイラーの燃料としても使用されます。再生可能エネルギー源として、持続可能なエネルギー供給に貢献します。
  • 家庭用燃料: 一部の地域では、バイオコークスが家庭用の暖房や調理用燃料として利用されることもあります。

バイオコークスは、化石燃料に代わる持続可能なエネルギー源として注目されており、廃棄物の有効利用と環境保全に寄与する重要な技術です。

出典:ChatGPT

 

■ 有機汚泥のバイオ炭

 

バイオ炭とは?

バイオ炭とは、生物由来の有機物を酸素の少ない環境で高温で加熱し、炭化させることで得られる炭素に富んだ物質です。木質バイオマス、農業廃棄物、家畜糞便など、様々な有機物が原料として利用できます。

有機汚泥を原料にしたバイオ炭

有機汚泥は、下水処理場などで発生する有機物を主成分とする汚泥です。従来は埋め立て処分されることが多かった有機汚泥ですが、バイオ炭化することで、その価値を大幅に高めることができます。

有機汚泥バイオ炭のメリット

  • 土壌改良:
    • 土壌の保水性、通気性を向上させ、植物の生育を促進します。
    • 土壌中の有害物質を吸着し、土壌汚染の改善に貢献します。
    • 土壌中の有機物を長期的に供給し、土壌の肥沃度を保ちます。
  • 温室効果ガスの削減:
    • バイオ炭は炭素を長期的に固定するため、大気中の二酸化炭素濃度上昇を抑制する効果が期待できます。
  • 水質浄化:
    • 水中の栄養塩や重金属を吸着し、水質浄化に貢献します。
  • エネルギー源:
    • 高い発熱量を有するため、燃料として利用できます。

有機汚泥バイオ炭の利用例

  • 農業: 肥料、土壌改良剤
  • 環境: 水質浄化剤、土壌汚染対策
  • エネルギー: 燃料

有機汚泥バイオ炭の課題と今後の展望

有機汚泥バイオ炭の利用はまだ始まったばかりであり、以下の課題があります。

  • コスト: バイオ炭化のためのエネルギーコストや設備投資コストが高い。
  • 品質の安定化: 原料となる有機汚泥の成分によって、生成されるバイオ炭の品質が大きく変動する。
  • 大規模生産: 現在のところ、大規模なバイオ炭生産システムが確立されていない。

これらの課題を解決するためには、以下の取り組みが重要です。

  • 低コスト化: 高効率なバイオ炭化技術の開発、再生可能エネルギーの活用
  • 品質管理: 原料の選定、炭化条件の最適化
  • 法規制の整備: バイオ炭の品質基準や利用に関する法規制の整備

まとめ

有機汚泥バイオ炭は、環境問題解決に貢献する新たな技術として注目されています。今後、さらなる研究開発と社会的な取り組みによって、その利用が拡大していくことが期待されます。

出典:Gemini

 

■ 有機汚泥のバイオコークス

 

バイオコークスは、従来の石炭コークスと同様に高温で炭化させた炭素製品ですが、その原料がバイオマス(植物など)である点が特徴です。近年、有機汚泥を原料としたバイオコークスの研究開発が活発に行われています。

有機汚泥を原料とするメリット

  • 廃棄物処理の高度化: 下水汚泥などの有機汚泥は、焼却や埋め立てといった従来の処理方法に比べて、バイオコークスとして再生利用することで、より高付加価値化が可能です。
  • 環境負荷の低減:
    • 温室効果ガスの削減: バイオマス由来の原料であるため、化石燃料由来の石炭コークスと比較して、燃焼時の二酸化炭素排出量を削減できます。
    • 資源循環: 廃棄物である有機汚泥を有効活用することで、資源の循環型社会の実現に貢献します。
  • 高品質なコークス生成: 有機汚泥の種類や炭化条件を最適化することで、石炭コークスに匹敵する高品質なバイオコークスを製造できます。

製造プロセス

  1. 前処理: 有機汚泥を乾燥させ、水分や不純物を除去します。
  2. 炭化: 酸素の少ない環境で高温に加熱し、炭化させます。
  3. 冷却: 炭化後の製品を冷却し、バイオコークスを得ます。

利用分野

  • 鉄鋼業: 高炉の還元剤として、石炭コークスの代替品として利用が期待されています。
  • 鋳造業: 鋳物製品の製造に用いられます。
  • 建設業: コンクリートの強度向上剤や吸着剤として利用が検討されています。

今後の課題と展望

    • コスト削減: 製造コストの低減が、実用化に向けた大きな課題です。
    • 品質の安定化: 原料の品質や炭化条件によって製品品質が変動するため、安定した品質のバイオコークスを製造するための技術開発が必要です。
    • 法規制: バイオコークスの製造・利用に関する法規制の整備が求められます。

出典:Gemini

 

Biogreenは火気を一切使用しない電気加熱での連続式熱分解装置ですので、運転は簡単で安全衛生面に優れています。
原料の利用用途に合わせた熱分解処理が、温度及び滞留時間調整で簡単に行えます
廃棄物、バイオマスのBiogreen熱分解処理でガス化炭化オイル製造ができます。
発電燃料化、土壌改良剤、原料使用など様々な用途で利用できゼロエミッションが可能です。

 

乾燥機 KENKI DRYER
どこもできない付着粘着物の乾燥機
https://kenkidryer.jp
会社サイト
もう悩みません。コンベヤ、産業環境機械機器
https://kenki-corporation.jp